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I. Phys. A Math. Gen. 26 (1993) 2421-2435. Printed in the LK 

Topological gauge field mass generation by toroidal spacetime 

Klaus Kmtent 
Universiriit Kaisenlautem, Fachbereich Physik. 6750 Kaisenlautem, Federal Republic of 

Received 1 September 1992 in final form 12 February 1993 

Abstract, We wnsider an Abelian gauge field theory on Euclidean partially compactified 
spacetime TN x Rn for arbilmy N and n. The one-loop effective potential generated by 
quantum fiucluations of a massive scalar field, minimally coupled to a constant badrground 
Abelian gauge potential is dqnlated for arbilrary wmpactification lengths L I .  . . . , LN of the 
multidimensional torus. In particular the topologically generated mass of the gauge field is 
obtained and its complicared dependence on the parameters involved (compactification lengths, 
mass M of the scalar field) is given explicitly. It is found that the topologically generated mass 
is positive for arbilmy N and n and that it does not depend on a renormalization parameter. 
For n > 2 the limit M -+ 0 is smooth, but for n = 0.1.2 zero modes play a crucial role and 
the generation of real or imaginary gauge field masses is possible. 

1. Introduction 

Topological mass generation and the Casimir effect are beautiful and simple manifestations 
of the influence that boundaries or non-trivial spacetime topologies have on quaittun field 
theories (see for example [1-19]). The vacuum structure depends strongly on the global 
structure of spacetime and in general it is difficult to obtain even the sign of resulting 
Casimir forces, or to say that topologically generated masses are re$ or imaginary (see 
however [8,20]). 

Explicit results may only be derived for highly symmetric configurations 1 2 4 8 -  
1 I, 2C-241. The most familiar example of topological mass generation is Euclidean finite- 
temperature field theory, in which. all fields are defined on the spacetime cylinder SI x R", 
n E NO. The resulting topological mass of the time component of the gauge potential is 
known as the inverse plasma screening length of the finite-temperature gauge theory. 

In the generalization to finite-temperature quantum field theory we consider a Euclidean, 
Abelian gauge theory in TN x Et", N E N, where the different toroidal components are 
assumed to have arbitrary compactification lengths LI, . . . , L N .  These considerations are 
mainly based on the work of Actor [25-271, where a lot of literature relevant in the context 
of topological mass generation may also be found. 

A massive complex scalar field q$ defined on T N  x En with periodic boundary 
conditions for each of the toroidal components is coupled to a constak gauge potential 
A, = ( A , ,  . . . , A N .  A),  A E Et". Due to the non-trivial topology, constant values of 
the toroidal components A,, a = I, . . . , N, are physical parameters of the theory and the 
effective potential of the gauge theory will depend on these parameters. 

We will give a more detailed analysis of the theory in section 2, then calculate the one- 
loop potential in sections 3 and 4. The main technical complication arises because of the 
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arbitrary compactification lengths of the toroidal components. Two different derivations are 
given, one especially useful for large values of the mass of the quantum field @ (section 3) 
and, in order to analyze the massless quantum field (see section 5), one for small values 
(section 4). The results involve different types of generalized Epstein zeta functions and the 
relevant properties of them are summarized. Given the exact oneloop effective potential it 
is possible to read off the topologically generated masses of the toroidal components of the 
gauge potential and to discuss some of their properties. 

2. Abelian gauge field theory on TN x R" 

Let z = (z, y) be a position vector in T N  x R", where x E TN, y E R". Then the Abelian, 
Euclidean gauge field theory we consider may be described by the field equation 

N 2 { - x ( L - i A i )  i d  axi -A+M2)@(x,y)=0 

with periodic boundary conditions for q5(x,y) in the toroidal directions, q5(xi,y) = 
@(.xi + Li, y). Here, A is the Laplacian of Rn and the Ai's are the constant toroidal 
components of the gauge potenhal (a constant patt A E R" is a non-physical parameter and 
has been gauged away), which are angular variables of the theory, - - i ~  < LiAi < K [24]. 
Furthermore, to ensure gauge invariance of the theory, the constant values of A have to be 
interpreted as $ A  1281. 

We are interested in the oneloop effective potential V(A1, ..., A N ;  L I ,  . . . , LN) of the 
theory (as an abbreviation we write V(Ai ;  Li)). In the zeta function regularization scheme 
it is defined by [29,30] 

V T V ~ S ( A ~ ;  Li) = ((R Ai; Li) InA2 - ('(0; Ai; Li) (2.2) 

where A is a scaling length, VT = L1 x . . . x LN is the volume of the torus and the prime 
denotes differentiation with respect to the first argument (this means with respect to s, see 
equation (2.3)). <(s; Ai; Li) is the zeta function associated with the operator (2.1) this 
means for Res $(n + N )  

where we have introduced the dimensionless parameters U' = (L1M/Zx)*, ut = AiLi /2~r ,  
wi = (Li/Li)', and the generalized Epstein zeta function 

z,$ (U; wl, ... , W N ;  U!, . . ., U N )  

m 
= [WI(f1 - U 1 ) 2 f ' . ' f W N ( ~ N - U N ) 2 + U 2 ] - "  (2.4) 

I , .  ... J p - 0 0  

valid for Res N / 2 .  
To find the effective potential (2.2) we need the derivative of equation (2.3) at s = 0. 
Let us first express equation (2.2) in terms of properties of the generalized Epstein zeta 

function Z$ (s; w1.. .. , w N ;  q,.. . , U N ) .  
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Using regularization techniques for Mellin transforms [31,32], it is easy to show, 
that for N even the poles of order one of Z f  (s; W I ,  . . . , W N ;  u1,. . . , U N )  are located at 

t E NO. The residuum 
s = - N  ' - I N - I ;  ... ; 1, whereas for N cddone findss = i N ;  $ N - 1 ;  ... :~;; -$(21+ I), 

2 ' 2  

does not depend on the toroidal components Aj of the gauge potential. 
In addition for p E NO one has 

2: ( -pi  W l r . .  . ~ W N ;  U l r . .  . . U N )  

Due to the different pole structure for N even and N odd, and, furthermore., because 
of the different behaviour of r (8 - $)/r(s) at s = 0 for n even and n odd, one has 
to consider four different situations. Introducing PP Zf for the finite part of Zf, the 
different results for the effective potential read 
(i) n = 2 k ,  k ENO, N even 

+ Zf ( -k;  W I ,  ... , W N ;  U I .  . . . , U N )  [2ln(L1/2zA) + y + @ ( k  + l)]) 
(2.7) 

(ii) n = 2k, k E No, N odd 

(2.8) 

(iii) n = 2k + 1, k E No, N even 

+Res 2: ( -k  - $; WI,. . . , ~ w N ;  U], . . .. uN) 

(2.10) 

where @ ( z )  = r' (z) /r(z)  and y = -@(l). 
In order to obtakthe effective potential, the remaining task is to construct analytical 

continuations of Z$ (w; w1,. . . , W N ;  u1,. . . , UN), equation (2.4) to Re w c N / 2  and to 
determine the properties of Z$ (v; wl, . . . , WN; u t . .  . . , U N )  needed in equations (2.7)- 
(2.10). This will be done in the following sections, where different approaches useful 
for large and small values of uz are described. 
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3. Calculation of the effective potential for large values of v2 

Let us first derive a representation of the effective potential which is useful for large values 
of I?. 

As mentioned in section 2 we need the analytical continuation of the function 
2: (s; W I . .  . . , W N ;  U I . ,  . . , UN), equation (2.4), to Res c N / 2 .  Writing, as usual, equation 
(2.4) in the form of a Mellin transform and performing re-summations employing fort E R+, 
z E C [33] 

which is due to Jacobi's relation between theta functions, one finds 

where the prime means omission of the summation index 11 = . . . = I N  = 0 (for similar 
considerations see [34]). 

Using equation (3.2).  the relevant information in equations (2.7>-(2.10) may be 
calculated and the effective potential is determined to be 

We are interested in the topologically generated masses mfi of the toroidal components 
Ai of the gauge potential. Given the expansion of K ~ ( w i ;  ui) in powers of the Ai's, these 
masses m; are defined as the coefficients of the quadratic terms in that expansion 

(3.4) 1 2 2  = - [ m q A ,  +...+ m;,,Ai] +non-quadratic terms 
2g2 
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where the gauge coupling g2 has dimension ( m a ~ s ) ~ - ~ - ~ .  
First, equation (3.3) shows that the masses m$ are independent. of the renor- 

malization scale A. This is already obvious from equations (2.7)-(2.10), because 
2: (-k: w i ,  . . . , W N ;  U I ,  ..., U N )  (respectively Res Z,$(-k- 4; WI, . . . , W N ;  UI.. . . , U N ) )  

is independent of the gauge potential. 
In order to determine the masses m$ the full expansion of Ver(wi; U;) in powers of the 

Ai's is obtained. The relevant part of equation (3.3) reads 

~ ( u l , .  . . , U N )  = 

where f (11 .  . . . , l ~ )  contains only quadratic powers of the 'summation indices. l i ,  i = 
1,. . ., N .  Using some multi-index notation, that is for u(1) = (U,. . . ., W I ) ,  U( 2 0, 
i = 1, ..., I ,  and x = (x j ,  . . . , xl) ,  we define 

2 'exp(2lri[llul+. . . +lNUN]]je(ll,. . . , 1 N )  
I, ..... I,=-m 

I 

U! := u l ! .  ..VI! Iul : = c u i  
i=1 

the Taylor series expansion of R e t , .  . . , UN) reads 

x 2 f ~ , ,  . . . , li,)x2"(')(il,. . . , it) (3.5) 

where x h ,  ..., i 0  = (licui,, ..., li,ui,) and Cri ,,.... ;,, denotes.the sum over all possible 
choices of the il < . . . i ir among 1, . . . , N .  

It, ..... I:,=l 

As a result, equation (3.3) may be given in the form 

(_l)$(.+NI 
[$(I + $(n + N ) )  + y - 2ln(AM)] 

($ (n  + N ) ) !  
for n + N even I X 
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Contributions to the topological mass only arise for Iv(t)l = 1 and one finds 

2 - 2 2 ~ - N ~ + ( " + N )  m,, - 8  L j L ;  
m=l U, ..... j m - d f j J j  ,,.... f,m-,=l 

(3.7) 

where now x,j,.,..,jmTt, denotes the sum over all possible choices of the indices j l  c . . . < 
jm-1among1 ._.., j - l , j + l ,  ..., N .  

For an equilateral torus L I  =. . . = LN = L the result reduces to 

x 2 [ : [ l : + . . . + l ~ ] - a ( n + N ) K  ;(n+N)(ML11?+..-+4,J 2 112 ). (3.8) 

Obviously the masses m$, are positive for arbitrary n, N ,  M > 0 and L j ,  . . . , L N ,  and 
exponentially damped for v + 00, that is for fixed compactification lengths for M + ca. 
To give some idea of this strong dependence, in table 1 we give some numerical values of 
the topologically generated mass for the case n + N = 4 and for some values of the relevant 
product LM (restricting to the equilateral toms and gM = n). It is seen, that due to the 
exponentiell decay of the Kelvin function the value of the mass m; for increasing values 
of LM goes very quickly to zero. 

11. ... Jm=l 

Table 1. Values of the topologically generated mass for LM = 0.1,1,10. 

LM 0.1 1 10 

n=3. N=l 313 1.97 0.WOOZ 
n=2. N=2 1045 3.35 O.WOO2 
n= l ,N=3  5593 5.86 O.WOM 

To establish a connection between the topologically generated mass in N - 1 toroidal, 
n + 1 free dimensions and N toroidal, n free. dimensions, let us change the notation for 
m$ in equation (3.7) for a moment. We now write m i ( N )  to remind ourselves that it 
is the mass of the gauge potential A j  generated in N compactified dimensions. Then, for 
j = 1, . . . , N - 1, we find as a consequence of equation (3.7) 
m$(N) = m$(N - I) + g2L,?L;n-N~f.'"+N) 

(3.9) 
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where '&r,,,,,.r,,, denotes the sum over possible choices of fi c ... -z fm-2 among 
1,. . ., j - 1, j + I , .  . . , N - 1. In the limit LN + 03 the Kelvin functions in equation 
(3.9) are exponentially damped and the result reduces to the result of N - 1 compactified 
dimensions, as it should. 

This completes the results for the topologically generated masses, useful for large values 
of U'. The results for special values of n and N are easily read off and need not to be stated 
explicitly. 

Analogous results for small values of uz are more difficult to obtain. This is the subject 
of the following section. 

4. Calculation of the effective potential for small values of v2 

As already mentioned, the results (3.3). (3.6) and (3.7) are useful for large values of U due 
to the exponential decay of the Kelvin functions involved. In order to obtain a power series 
representation in powers of U* we proceed in another direction. 

It is reasonable to employ the identity 

z $ ( s ; w ~ , . . . ~  w N ; U i , . . . ,  U N ) = [ W I U : + . . ' + W N U N + U ]  2 2 -5 

where we define 

Z N  (v;  W l r  .. . Y  w N ;  UI,. . . I U N )  

m ,  
=~ [ w l ( l i  - U 1 ) 2 + " ' f w N ( ~ N - ~ N ) Z ] - Y .  

l,....,fN=-cs 

Once again using regularization techniques for Mellin transforms, it is easy to see that the 
only pole of ZN (s; wl, . . . , W N ;  u i . .  . . , U N )  is located at s = N/2 with 

furthermore one has 

z N ( - p ;  w l  ...., w N ; U I  , . . . , U N ) = - [ W i U : + . " + W N U ~ ] P  

for p E No. Employing equation (4.1) in equations (2.7H2.10), the expansion of 
V d w ; ;  ui) in powers of U is obtained, where the coefficients are given by properties of the 
generalized Epstein functions Z N  (s; W I ,  . . . , W N ;  U,. ..., UN). We skip the.rather long but 
essentially routine calculations and give here just the final results for the effective potential, 
equations (2.7)-(2.10): 

(i) n = 2k, N even 
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(4.4) 
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W I ,  . . . W N :  U[,. . . , U N  

x PP Z N  (NI2 W I ,  .. . , W N ;  U!, ..., U N )  L 
(4.5) 

In order to determine the topologically generated masses mr,, we need the series expansion 
(3.4) of equations (4.2X4.5) in powers of the toroidal components Ai of the gauge potential, 
this is the expansion of Z N ( S ;  wl, . . . , W N ;  uI.. . . , U N )  in powers of the ui 's .  This has 
been accomplished only recently with the result [35] 

zN(s;wl....,wN~ul,...,~N) 

where x = ( W I U I ,  . . . , W N U N ) ,  U = ( V I , .  .. , UN) 

and we introduced the Epstein zeta function [8,36-461 

(4.7) 

Explicit analytical continuations of equation (4.7) may be found for example in [SI. The 
properties of Z N  (s; w,, . . . , W N ;  u l ,  . . . , u N )  relevant for equations (4.2H4.5) may be 
determined with the aid of equation (4.6). Using them in equations (4.2X4.5) yields the 
exact power series of V&wi; ui) in powers of M and in powers of the toroidal components 
of the gauge potential. This is not done explicitly, because the results are very long and we 
only want to concentrate on the resulting topologically generated masses. 

Contributions to the topologically generated masses arise, when we choose j = 1, 1 = 0 
or j = 2, 1 = 1 in equation (4.6). 

For n = 0, 1 ,2  zero modes play a crucial role and the limit U -+ 0 leads to divergent 
masses m$ . In detail the results for arbitrary N ?e: 

(i) n = 0 

EN (U; wl,  . . . , W N )  = 5 ' [ W I U :  + " '  + W N U N ]  2 -I' . 
I , ,  .... l,=-W 
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(ii) n = 1 

(4.9) 

(iii) n = 2 

where we have introduced 

I+l r(i + 1 - $n) 
B, = (-1) I !  

x (I+2w,aw,)PPEN ( I + I  - i n ;  wl, ..., w N ) .  (4.1 1) 

In the cases where EN (l + 1 - i n ;  WI,. . . , U I N )  is well defined, the symbol PP is 
meaningless. For It > 2 the limit U + 0 is smooth, and for arbitrary N one finds 

(i) n = 2k even, k E N, k 1 

(ii)n =Ur+ 1 odd, k E N, k 2 1 

(4.12) 

(4.13) 

with 

and BI given by equation (4.1 1). 
Given these forms of the results it would have been difficult to determine a definite sign 

form;.  But as we know from section 3, m; in equations (4.8H4.13) is always positive for 
arbitrary L I ,  . . . , L N .  Nevertheless we present these results, because in contrast to equation 
(3.7) they also contain, in a simple way, the results for U = 0 (see section 5). 

The results for an equilateral torus are easily recovered by recognizing 

a,,,i E N  (s; wl, . . . , w N )  l w  ,=.. c,uN=l = - -EN (s; I, . . . , I ) .  
S 

N 
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The corresponding topologically masses are easily obtained from (4.8H4.14) and need not 
be given in detail. Furthermore, the masses for particular values of n and N may easily be 
stated, so we do not present them here. 

Let us remark that it is possible to give different forms of the results by using the 
reflection formula for the Epstein zeta function [8,36,37] 

r ( S ) H - S E N  (S; W I ,  . . . , W N )  

r(4N - s ) H ‘ - ~ / ’ E N  1 ’>. 1 
WN 

- - Jm (4.15) 

For example (4.15) implies 

(1 + 2 W j a q ) E ~  (S; W l .  . . . , W N )  

which may be used in equations (4.8H4.14). However, for U # 0 no essential 
simplifications are found, but this will change for U = 0, where (4.16) enables us to discuss 
the sign of m$,. 

5. Generation of imaginary gauge field mass 

The Abelian gauge field theory of a massless scalar field coupled to a constant background 
gauge potential is something special in that the creation of imaginary gauge field mass is 
possible. For this reason a seperate section is dedicated to this theory. 

The starting point is the field equation (see equation (2.1)) 

with periodic boundary conditions in the toroidal directions. Going through the calculations 
of section 2 and 4 one recognizes, that the topologically generated mass is obtained from 
equations (4.8H4.14) just by neglecting the contribution in eqktion (2.4) resulting from 
the summation index 11 = . . . = [ N  = 0 in (2.3) and performing the limit U -+ 0. 

Using equation (4.16). for n > 2 the result reads 

But for Res  N I 2  and w1 > 0,. . . , W N  > 0, one finds 

(5.3) 

and as a consequence m$, S O  for n > 2. This was already clear from equations (4.12) and 
(4.13) because the limit U + 0 is smooth for these cases. 
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But for n < 2 similar conclusions are not possible. The case N = 1 is especially simple 
in that E , @ ;  w )  = Z W - ~ < R ( ~ S )  with the Riemann zeta function <R. Using well known 
properties of the Riemann zeta function [47,48], one finds in detail 

(i) n = 0, N = 1 

(ii) n = 1, N = 1 

m + = - - c ~  g2 
n 

(iii) n = 2, N = 1 

(5.4) 

(5.5) 

(5.6) 

So for n 6 2, N = 1, the topologically generated gauge field mass is always imaginary. 
For the remaining dimensions n ,  N, depending on the compactification lengths 

L1, . . . , LN involved, the generation of real and imaginary gauge field mass is possible. 
This will be shown in the rest of this section. 

First, equation (4.16) implies for the topologically generated mass 

(a) n = 0, N = 2 

(5.7) 

(b) n =0, 1 , n +  N > 3 

(c) n = 2, N > 1 

For these examples, the determination of the sign of m$ is not so simple as in equations 

(5.2) and (5.3). This time we need the properties of &",EN (s; &, . . . , for arguments 
s E [O, N/21, where the defining series, equation (5.3). is not convergent and so the positivity 
is no longer guaranteed. So, in order to make a statement about the sign of m$ an explicit 
analytic continuation of equation (5.3) to Res < NI2 has to be considered. 

-9 N 
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Performing as usual a Mellin 
transformation and %-summations (see for example, [49]), one possible analytic continuation 
is 

 without restriction let us concentrate on m;,. 

(5.10) 

First one recovers the positivity of (5.10) for Res > N / 2  already given in equation (5.3). 
because both terms in the curly brackets are positive. But for s E [O, N / 2 ]  the first term 
(respectively the finite part of the first term) is negative and because the Kelvin functions 
are exponentially damped for large arguments, this opens the possibility of imaginary mass 
generation. However, it may also be shown that the second term in the curly brackets 
(the sum over the Kelvin functions) is arbitrarily large in a given range of the parameters 
W I ,  . . . , W N ,  so that the generation of real gauge field mass is also possible. 

To be more concrete, let us exempl i  the remarks for example (5.7), the corresponding 
argument for examples (5.8) and (5.9) is very similar. 

Firsf using (5.10) one finds for (5.7) 

(5.11) 

where in the last equality K&) = w e x p ( - z )  1471 has been used 
Obviously the second term in the curly brackets goes to zero (respectively to infinity) if 

w2 goes to infinity (respectively~to 0). SO at some critical value of wz = ~ 1 / L z  a transition 
from real to imaginary mass will take place. 

For the examples (5.8) and (5.9).the analogous, but more complicated, results of equation 
(5.11) may~be derived with'the conclusion, that in given ranges of the compactification 
lengths L I  , . . . , L N ,  the generated gauge field mass is real or imaginary. 

6. Conclusions 

In this paper we have considered the quantum field theory of a massive or massless scalar 
field @, minimally coupled to a constant background Abelian gauge potential. The scalar 
field # is defined on spacetime T N  x R", so that the toroidal components of the gauge 
potential become physical parameters. The origin of the topology T N  xR" may, for example, 
be imagined as imposed externally, the way S' x R" is imposed on finite-temperature 
Euclidean field theories. Another possibility is (see 1271 for more details) that a scalar field 
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possessing a self-interaction can generate its own non-hivial spacetime topology through 
ordinary Casimir energy effects [81. 

The effective potential of the theory occupies a central position. Two calculations of the 
effective potential, convenient in different ranges of the parameters involved, are presented 
(see (3.3) and (4.2X4.5)). The topologically generated gauge field masses m$ of the 
toroidal components of the gauge field are of particular interest. In contrast to the effective 
energy, which diverges if the quantum mass M tends to infinity, the gauge field mass is 
exponentially damped for large M and so vanishes in the limit M + 03. Furthermore it 
does not depend on a renormalization scale and we have shown, that for a massive scalar 
field the masses mq are real for arbitrary mass M of the quantum field and for arbitrary 
compactification lengths L I ,  . . . , LN of the torus. As a result Ai = 0 is a local minimum 
of the vacuum energy. So for a massive scalar field, the calculations show a possible 
mechanism for the quantum generation of a gauge boson mass analogous to the electric 
screening mass in finitetemperature field theory. 

However, for a massless scalar field we have seen that Ai = 0 may also be a local 
maximum of the vacuum enery. For n = 0,l.Z there always exist given ranges of 
compactification lengths, such that an imaginary gauge field mass is generated, which 
reveals a quantum mechanism for gauge symmetq break down. The new phase of the 
gauge theory generates masses for scalar fields, by a mechanism which is almost a perfect 
inversion of the standard Higgs mechanism for generating gauge field mass by giving scalar 
fields a vacuum expectation value (for a detailed discussion see 1271). 

In comparison for n z 2 the limit M + 0 is smooth and imaginary gauge field mass 
generation is impossible. 
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